Analyse spatiale et spectrale des motifs d'échantillonnage pour l'intégration Monte Carlo. (Spatial and spectral analysis of sampling patterns for Monte Carlo integration)

نویسنده

  • Adrien Pilleboue
چکیده

Sampling is a key step in rendering pipeline. It allows the integration of light arriving to a point of the scene in order to calculate its color. Monte Carlo integration is generally the most used method to approximate that integral by choosing a finite number of samples. Reducing the bias and the variance of Monte Carlo integration has become one of the most important issues in realistic rendering. The solutions found are based on smartly positioning the samples points in a way that maximizes the uniformity of the distribution while avoiding the regularities. From this point of view, the 80s were a turning point in this domain, as new stochastic methods appeared. With a better comprehension of links between Monte Carlo integration and sampling, these methods allow the reduction of noise and of variance in rendered images. In parallel, the complexity of sampling methods has considerably enhanced, enabling to have fast as well as good quality methods. However, these improvements have been done by trial and error focusing on two major points : the improvement of sampling pattern uniformity, and the suppression of regularities. Even though there exists some theories allowing to bound the error of the integration, they are usually limited, and even inapplicable in computer graphics. This thesis proposes to gather the analysis tools of sampling patterns and to connect them together. These tools can characterize spatial properties such as the distribution of distances between points, as well as spectral properties via Fourier transformation. Secondly, we have used these tools in order to give a simple expression of the bias and the variance for Monte Carlo integration ; this is done by using prerequisites compatible with image rendering. Finally, we present a theoretical toolbox allowing to determine the convergence speed of a sampling method from its spectral profile. This toolbox is used specifically to give indications about the design principles necessary for new sampling algorithms.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Sampling and Variance Analysis for Monte Carlo Integration in Spherical Domain. (Analyse de Variance et Échantillonnage pour l'intégration Monte Carlo sur la sphère)

This dissertation introduces a theoretical framework to study different sampling patterns in the spherical domain and their effects in the evaluation of global illumination integrals. Evaluating illumination (light transport) is one of the most essential aspect in image synthesis to achieve realism which involves solving multi-dimensional space integrals. Monte Carlo based numerical integration...

متن کامل

L'Intégration des Méthodes Monte Carlo par Chaînes de Markov dans l'Apprentissage des Réseaux de Neurones

Résumé : Les méthodes Monte Carlo par chaînes de Markov (MCMC) , s’inscrivent dans le cadre du formalisme Bayésien .On peut dire que l’application de ces méthodes à l’apprentissage des réseaux de neurones peut apporter plusieurs avantages, tout d’abord, l’introduction de connaissances a priori est susceptible d’améliorer l’estimation des paramètres. De plus, le formalisme Bayésien permet une an...

متن کامل

On the I(q) Test Statistic for Spatial Dependence: Finite Sample Standardization and Properties

One of the most widely used tests for spatial dependence is Moran’s (1950) I test. The power of the test will depend on the extent to which the spatial-weights matrix employed in computing the Moran I test statistic properly specifies existing interaction links between spatial units. Empirical researchers are often unsure about the use of a particular spatial-weights matrix. In light of this Pr...

متن کامل

A resampling variance estimator for the k nearest neighbours technique

Current estimators of variance for the k nearest neighbours (kNN) technique are designed for estimates of population totals. Their efficiency in small-area estimation problems can be poor. In this study, we propose a modified balanced repeated replication estimator of variance (BRR) of a kNN total that performs well in small-area estimation problems and under both simple random and cluster samp...

متن کامل

Modification of UCT with Patterns in Monte-Carlo Go

Algorithm UCB1 for multi-armed bandit problem has already been extended to Algorithm UCT (Upper bound Confidence for Tree) which works for minimax tree search. We have developed a Monte-Carlo Go program, MoGo, which is the first computer Go program using UCT. We explain our modification of UCT for Go application and also the intelligent random simulation with patterns which has improved signifi...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2015